关键词[c������������������]相关搜索结果,共搜索到61750条结果

快速数论变换(NTT)

说讲解NTT之前,我们先说简单一下FFT和卷积。由此可见,我们的FFT最大的用处便是处理卷积问题。比如说CF993E但在如今的OI界,取模之风逐渐替代了高精之风。我们使用已经过时的double其实并不是什么明智之举。有什么解决它的好办法呢?有倒是有,但是需要提前学习原根这一概念。原根:虽然只看定义会感觉很迷惑,但有一点很明显:并不是所有的数都有原根。具体的:只有2,4,$p^k$,$2p^k$有原根,其中p是除了2以外的任意质数。k是任意正整数。光有定义什么都做不到,我们需要前人推出来的性质。性质1:如果g是n的原根,那么$g^0,g^1,...,g^{\phi(n)-1}$在模n的意义下均不同。性质2:对于互质的正整数𝑔,𝑛,设$𝑝_1,𝑝_2,⋯,𝑝_𝑘$为𝜑(𝑛)的所有质因数,若𝑔是𝑛的原根,则对于∀𝑖∈[1,𝑘],有$g^{\frac{𝜑(𝑛)}{𝑝_𝑖}}\not\equiv1(mod$$n)$由性质2可以得到:对于一个正整数,如果它有原根,那么它最小的一个原根通常很小,所以我们可以从小到大枚举正整数,然后用上个性质检验。、快速数论变换NTT: NTT和DFT最大的差别就在于主单位根的选取,根据原根的性质,如果𝑝为质数,那么在$𝔽_𝑝$上$𝑔^{(𝑝−1)/𝑛}$就是𝑛次主单位根。能被写成$𝑡⋅2^𝑘+1$形式的质数也被叫作NTT模数,常见的NTT模数有:469762049、998244353、1004535809现在我们会在𝑝为NTT模数的时候,做𝔽_𝑝上的NTT了,那么如果模数不是NTT模数该怎么办呢?假设𝑝不是NTT模数,设𝑎𝑛𝑠=𝑎∗𝑏,我们要求𝑎𝑛𝑠%𝑝,那么我们可以取互不相同的NTT模数𝑞_1,𝑞_2,⋯,𝑞_𝑘,通过NTT求出𝑎𝑛𝑠%𝑞_1,𝑎𝑛𝑠%𝑞_2,⋯𝑎𝑛𝑠%𝑞_𝑘,然后用中国剩余定理求出𝑎𝑛𝑠%𝑝至于要取几个NTT模数,只要保证∏_(𝑖=0)^𝑘▒𝑝_𝑖 大于𝑎∗𝑏数组里的最大值即可。一般情况下取469762049、998244353、1004535809就足够了,所以这种方法也被称为三模NTT#include<bits/stdc++.h>#defineinc(i,a,b)for(registerinti=a;i<=b;i++)usingnamespacestd;intn,m;longlonga[4000010],b[4000010];constintp=998244353;longlongKSM(longlonga,longlongb){longlongres=1;while(b){if(b&1)res=res*a%p;a=a*a%p;b/=2;}returnres;}intrev[4000010],num,limit=1;voidNTT(longlong*now,inttype){inc(i,0,limit-1)if(i<rev[i])swap(now[i],now[rev[i]]);for(intmid=1;mid<limit;mid<<=1){longlongg=KSM(3,(p-1)/(mid<<1))%p;if(type==-1)g=KSM(g,p-2)%p;for(intl=0,r=(mid<<1);l<limit;l+=r){for(longlongw=1,j=0;j<mid;j++,w=w*g%p){longlongx=now[l+j],y=w*now[l+j+mid]%p;now[l+j]=(x+y)%p;now[l+j+mid]=(x-y+p)%p;}}}}intmain(){cin>>n>>m;inc(i,0,n)scanf("%lld",&a[i]);inc(i,0,m)scanf("%lld",&b[i]);while(limit<=(n+m))limit<<=1,num++;inc(i,0,limit-1)rev[i]=((rev[i>>1]>>1)|((i&1)<<(num-1)));//cout<<11111;NTT(a,1);NTT(b,1);inc(i,0,limit-1)a[i]=(a[i]*b[i])%p;NTT(a,-1);longlonginv=KSM(limit,p-2);inc(i,0,n+m)printf("%lld",a[i]*inv%p);}

go中使用xcopy问题追踪

输入命令确定可加入/y参数自动确认,未加时报错如下APIserverlisteningat:127.0.0.1:20075源文件夹:C:\workspace_go\test_pb目标文件夹C:\workspace_go\fffwindowscmdOut:C:\workspace_go\fff\Common.proto(Y:/N:/A:ȫ)?C:\workspace_go\fff\Common.proto(Y:/N:/A:ȫ)?cmd.Run()|err:exitstatus2---FAIL:TestCopyDir(18.72s)---FAIL:Test

激活函数

1.3激活函数1.3.1sigmoid激活函数我们通常就用其中最常用的logistic函数来代指sigmoid函数:f(x)=11+e&#x2212;x">𝑓(𝑥)=11+𝑒−𝑥f(x)=11+e−x特点:sigmoid函数和阶跃函数非常相似,但是解决了光滑和连续的问题,同时它还成功引入了非线性。由于其值域处在0~1,所以往往被用到二分类任务的输出层做概率预测。​缺点:当输入值大于3或者小于-3时,梯度就非常接近0了,在深层网络中,这非常容易造成“梯度消失”(也就是反向传播时误差难以传递到前面一层)而使得网络很难训练。其解析式中含有幂运算,计算机求解时相对来讲比较耗时。1.3.2Softmax激活函数Softmax又称归一化指数函数,适用于只有一个正确答案多类别分类问题(例如手写数字)。构建分类器,解决只有唯一正确答案的问题时,用Softmax函数处理各个原始输出值。softmax(xi)=exi&#x2211;j=1nexj">𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖)=𝑒𝑥𝑖∑𝑛𝑗=1𝑒𝑥𝑗softmax(xi)=exi∑j=1nexjSoftmax函数是二分类函数Sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。直白来说就是将原来的输出映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标。

vs 附加到进程调试方法

注意:只有源代码可以这么调试,发布版不行🙅‍

Semi-UI

Semi-UI现代、全面、灵活的设计系统和UI库。快速搭建美观的React应用。  简体中文| English🎉 特性💪 58+高质量组件💅 强大的主题定制,上千个DesignToken🌍 国际化支持14种语言👏 使用TypeScript,良好的类型定义🥳 支持SSR🔥 安装#使用npmnpminstall@douyinfe/semi-ui#使用yarnyarnadd@douyinfe/semi-ui👍 使用这是一个快速开始的例子:importReactfrom'react';importReactDOMfrom'react-dom';import{Button,Switch}from'@douyinfe/semi-ui';constApp=()=>(<><Buttontype='primary'>primarybutton</Button><Switchsize='large'/></>);ReactDOM.render(<App/>,document.querySelector('#app'));SemiUI官网 拥有上千个支持实时调试的例子,欢迎体验使用。📌 文档快速开始组件总览自定义主题DesignTokens暗色模式Icons全局配置国际化常见问题CHANGELOG👌 平台支持SemiUI支持所有主流浏览器。chromefirefoxsafariIE/EdgeElectronlatest2versionslatest2versionslatest2versionsEdgelatest2versions👐 贡献指南阅读贡献指南了解我们的开发流程,包括开发规范、测试规范和构建规范等。CONTRIBUTING👨‍👨‍👧‍👦 交流群有任何问题可以进群交流,我们会及时给予解答和反馈。加入用户群.🎈 协议SemiUI使用 MIT协议

养猪日记 2021.10.30

Saturday 晴小🐖今天去江北考教资~上午帮小🐖粘贴一下作业。下午把solidworks装了,看了算法课,晚上写了两道leetcode。疫情又来了,马上又要封校。一天没看到🐖,好想🐖。23:34 正心915

183/365

亲爱哒敏敏:早上好,对你的爱让我更好认识你我谢谢你,我爱你😘

186/365

亲爱的敏敏:早上好呀我的小公主爱你哟注意保暖哈😘

小生有礼了

亲爱的敏敏:脑海中除了你还是你爱你😘早点休息哈晚安

养猪日记 2021.12.3

Friday 晴下午去汇报了一下QT开发。写了两道leetcode,翁恺的课刷完了,接下来主要看项目课吧。🐖今天有一科考了95分,真棒!🐖是一只温柔的🐖,可能🐖最近学习太辛苦啦。23:10  正心915

养猪日记 2022.1.3

Monday 晴和🐖异地的第四天。今天写了3道算法题,看了4节项目课。下午和🐖打了电话,🐖说我不想她,才不是呢,我超想🐖的!Qt开了会,这周把任务完成,明天开写。1:19 安达

渐变色图片分享(转载)

https://www.zhihu.com/question/377407030(原博主)https://uigradients.com/#CanYouFeelTheLoveTonight👇

[Javascript] Using Map to set dynamic key and value

//❎constobject={}object[key]=value//👍betterperformanceconstmap=newMap()map.set(key,value)

Onenote 代码高亮奇技淫巧🤣

把代码放在一个1x1的表格内,并保留源格式🤣

感知机损失函数为什么可以不考虑1/||𝑤||

原文地址:感知机的损失函数中1/||w||为什么可以忽略_Innovat1on的博客-CSDN博客 ;为什么感知机使用函数间隔作为损失函数(忽略1/||w||)_zest_9527的博客-CSDN博客网上有人说1/||𝑤||是个定值,但是个人觉得平面不唯一,这个值肯定也会变。通过参考他人观点结合思考,觉得原因可以列为以下两点。1/||𝑤||不影响𝑦𝑖(𝑤⋅𝑥𝑖+𝑏)正负的判断,即不影响学习算法的中间过程。因为感知机学习算法是误分类驱动的,这里需要注意的是所谓的“误分类驱动”指的是我们只需要判断−𝑦𝑖(𝑤⋅𝑥𝑖+𝑏)的正负来判断分类的正确与否,而1/||𝑤||并不影响正负值的判断。所以1||𝑤||对感知机学习算法的中间过程可以不考虑。1||𝑤||不影响感知机学习算法的最终结果。因为感知机学习算法最终的终止条件是所有的输入都被正确分类,即不存在误分类的点。则此时损失函数为0.对应于−1/||𝑤||∑𝑖∈𝑀𝑦𝑖(𝑤⋅𝑥𝑖+𝑏),即分子为0.则可以看出1/||𝑤||对最终结果也无影响。综上所述,即使忽略1/||𝑤||,也不会对感知机学习算法的执行过程产生任何影响。反而还能简化运算,提高算法执行效率。对于他说的正负判定很赞同,因为感知器本身就是一个二类线性分类器,能够正确分类就行。并且最重要的一点就是我们知道感知器分类器是一个结果不确定的,也就是它的参数w,b都不是固定的值,只要能分类成功都可以,因此不考虑分母也说得过去还有什么原因想到之后继续补充最重要的一点:因为是优化,应用的等价loss

【Kafka安装】

我是🌟廖志伟🌟,一名🌕Java开发工程师🌕、📝Java领域优质创作者📝、🎉CSDN博客专家🎉、🌹幕后大佬社区创始人🌹。拥有多年一线研发经验,研究过各种常见框架及中间件的底层源码,对于大型分布式、微服务、三高架构(高性能、高并发、高可用)有过实践架构经验。🍊博主:java_wxid🍊博主:Java廖志伟🍊社区:幕后大佬文章目录Kafka一、Kafka是什么?二、Docker安装kafka三、安装包安装kafka一、安装JDK二、安装Zookeeper三、安装Kafka四、启动并验证kafka启动kafka进入zookeeper目录通过zookeeper客户端查看下zookeeper的目录树校验kafka创建主题查看kafka中目前存在的topic发送消息消费消息消费之前的消息Kafka可视化管理工具kafka-manager本文内容:Java廖志伟总结以上就是今天要讲的内容,还希望各位读者大大能够在评论区积极参与讨论,给文章提出一些宝贵的意见或者建议📝,合理的内容,我会采纳更新博文,重新分享给大家。🙏四连关注🔎点赞👍收藏⭐️留言📝感谢大家的支持,用心写博文分享给大家,你的支持(🔎点赞👍收藏⭐️留言📝)是对我创作的最大帮助。🍊微信公众号:南北踏尘🍊主页地址:java_wxid🍊社区地址:幕后大佬给读者大大的话我本身是一个很普通的程序员,放在人堆里,除了与生俱来的🌹盛世美颜🌹、所剩不多的发量,就剩下180的大高个了。就是我这样的一个人,默默坚持写博文也有好多年了,有句老话说的好,🌕牛逼之前都是傻逼式的坚持🌕。希望自己可以通过大量的作品,时间的积累,个人魅力、运气和时机,可以打造属于自己的🌟技术影响力🌟。同时也希望自己可以成为一个🎄懂技术🎄,🎄懂业务🎄,🎄懂管理🎄的综合型人才,作为项目架构路线的总设计师,掌控全局的🌕团队大脑🌕,技术团队中的🍊绝对核心🍊是我未来几年不断前进的目标。提示:以下都是资源分享,求个一键三连。面试资料福利大放送,🎉欢迎关注🔎点赞👍收藏⭐️留言📝,拜托了🙏,这对我真的很重要。点击:面试资料提取码:2021200套PPT模板福利大放送,🎉欢迎关注🔎点赞👍收藏⭐️留言📝,拜托了🙏,这对我真的很重要。点击:200套PPT模板提取码:2021提问的智慧福利大放送,🎉欢迎关注🔎点赞👍收藏⭐️留言📝,拜托了🙏,这对我真的很重要。点击:提问的智慧提取码:2021Java开发学习路线名称链接JavaSE点击:JavaSEMySQL专栏点击:MySQL专栏JDBC专栏点击:JDBC专栏MyBatis专栏点击:MyBatis专栏Web专栏点击:Web专栏Spring专栏点击:Spring专栏SpringMVC专栏点击:SpringMVC专栏SpringBoot专栏点击:SpringBoot专栏SpringCould专栏点击:SpringCould专栏Redis专栏点击:Redis专栏Linux专栏点击:Linux专栏Maven3专栏点击:Maven3专栏SpringSecurity5专栏点击:SpringSecurity5专栏更多专栏更多专栏,请到java_wxid主页查看P5学习路线图P6学习路线图P7学习路线图P8学习路线图以上四张图详细介绍了作为Java开发工作者所需要具备的知识技能,同学们学废了嘛,有想法系统学习的同学可以私聊我,🎉欢迎关注🔎点赞👍收藏⭐️留言📝。🍊博主:java_wxid🍊博主:Java廖志伟🍊社区:幕后大佬

UTF-8 与 GBK互转乱码的原因

f-8");System.out.println("utfEncode"+Arrays.toString(utfEncode));//用utf-8解码gbk编码后的字节,形成的字符串:йStringgbkDecodedByUTF=newString(gbkEncode,"utf-8");System.out.println(gbkDecodedByUTF);//对上一步的字符串й用utf-8编码后的字节//[-17,-65,-67,-17,-65,-67,-17,-65,-67,-17,-65,-67,-17,-65,-67,-48,-71,-17,-65,-

养猪日记 2021.12.20

Monday 晴今天写了3道leetcode,看了7节项目课。阿秀笔记再看一会,预计看到C++基础语法第21题。🐖超喜欢酸梅汤,今天一共买了三杯酸梅汤。晚上🐖睡了一觉,睡醒了头晕晕的,我说和她在走廊转两圈,🐖竟然想欺负我!后来我出去跑步,🐖又跟出来了,这小臭🐖。今天早点回去~23:31 正心415

养猪日记 2022.2.4

Friday 晴🐖今天从外婆家回家,🐖不怎么理我,哼今天翻了翻在学校拍的🐖的照片,好可爱吖,尤其是刚睡醒拍的,太好玩了。3道算法题,3节MySQL课,4节内存管理课,1节c++11新标准课。面试题:STL模板库:1~20睡觉🐖晚安,🐖娃晚安。2:11 安达

1 2 3 4 5 6 7 8 9 10 下一页